#IJIRST Journal

Tags

, , , , ,

IJIRST Journal Poster

https://www.linkedin.com/home?trk=nav_responsive_tab_home

11863067_1690386391195838_1773337923_o

Top Rated International Journal Recommended By Most of University

Impact Factor : 1.638

ISSN : 2349-6010

Publish Your Research article with ijirst.org

We Accept Only Quality Papers…

No Profit No loss International Journal to Promote Research Scholar..

www.facebook.com/ijirst

submit Your Article : http://www.ijirst.orghttp://www.ijirst.org

Advertisements

Dynamic Power Reduction in NOC by Encoding Techniques #IJIRST Journal

Tags

, , , ,

Paper Title:- Dynamic Power Reduction in NOC by Encoding Techniques

Abstract:- As technology improve the size will be reduced, and the power dissipated by the links of a network-on-chip (NoC) is starts to participate with the power dissipate by the other element of communication system, for example the routers and the network interfaces (NIs). We design an set of data encoding technique by different schemes to decrease the power dissipation by an links of NoC, which optimizing the on-chip communication system not only in terms of performance but also in terms of power. The idea presented in this paper is base on encoding the packets before they are inserted in to the network in such a way as to minimize both the switching action and the coupling-switching action in the NoC’s link which represent the main factor of power dissipation. These schemes were universal and transparent with respect to the construct NoC fabric that means this application will not require any change in the router and link of architecture. These will be carried in both artificial and real traffic scenario. These effective of the proposed scheme will tolerate to save the energy consumption and power dissipation without changing the performance degradation and with less area consumption in the NI.

Keywords: switching action, encoding, network-on-chip (NoC), low power, router, Network interfaces (NIs)

I.       Introduction

Moving towards silicon technology node to the next results faster and more efficient gates but slower because there is a more power hungry wires. More than 50% of total dynamic power is dissipate in interconnection in current processor, and this was expected to increase more over in the next several years. Global interconnect length does not scale with smaller transistors and local wires. Chip size remains relatively constant because the chip function continues for instance the RC delay increases exponentially. The RC delay in a 1-mm worldwide wire at the smallest pitch is superior to the intrinsic delay of a two-input NAND fan-out. If the raw computation horsepower seems to be un-limited, thanks to the ability of instance more core’s in a single silicon chip, scalable issue occur, due to making an efficient and reliable communication among the increasing number of core’s, become the real problem. The NOC invent is documented as the most feasible way to tackle with scalable and variability issue that characterize the ultra-deep sub-micron-meter. 

Now a days in the on-chip communication issue is relevant, in some of the case more relevant than commutating related issue. The communication sub-system more and more impacts the usual designed objective, and also includes cost (i.e., area of silicon), performances, dissipation of power, consumption of energy and reliability. As technology improves the size is reducing and more fraction of total power is budget of the complex in more core of the system-on-chip (SoC) this is because of communication sub-system.

Here we attentation on the technique aim to minimize power dissipation by a network link. The power dissipation in the network is relevant as that dissipation by NIs, routers and it is giving that ordinary to increase the technology scale. We are representing the set of encoding schemes for data which is in binary formate, and it is operated at flit level, and an end-to-end basis, this allows us to minimize the switching action and coupling switching action at the link of an direction is traverse by a packet. This encoding schemes, were transparent by respect to router execution, and they are presented, discussed in both algorithmic-level and architectural level, it is assessed via the simulation in the artificial, real traffic scenario. These analysis gives an different aspects, metrics design, it include area of silicon, energy consumption and dissipation of power. From the results we can conclude that with these proposed encoding schemes that power will save and also energy will be save without changing any major degradation in the performance in the NIs.

For more Information of this paper go on below link.

http://ijirst.org/Article.php?manuscript=IJIRSTV2I4033

Design and Modeling of Drum Handling Equipment #IJIRST Journal

Tags

, , , ,

IJIRST Journal Published this paper in our Journal. so kindly check it on our website.

Paper Title:- Design and Modeling of Drum Handling Equipment

Abstract:- This paper presents the use of drum handling equipment in the industries to reduce worker for drum handling. Material handling effect on human studied in this paper. Also study different material handling equipment used in industries.

Keyword:-

I.       Introduction

In many industries raw material and finished product handled in 210 Lit. Drum. They handle drum manually. In work place drum transported, lifted, Loaded, tilted etc. manually. Handling heavy load manually takes more time, also it is hazards and risky. In small pharmaceutical company around 25 different type of raw material use. It is in liquid form which is taken out from 210 lit. Drum by loading on horizontal stand. Company requires effective material handling equipment to solve material handling problem.

Manual drum handling equipment is used to do various function like transport, tilting, lifting, loading, unloading etc. In small industries or work shop drum barrel is handled manually which takes more time and more worker. Handling drum manually without using any equipment is hazards.

Manual handling is transporting or supporting of a load by one or more workers. It includes the following activities: lifting, holding, putting down, pushing, pulling, carrying or moving of a load.1 The load can be an animate (people or animals) or inanimate (boxes, tools etc.) object.

Manual handling occurs in almost all working environments (factories, warehouses, building sites, farms, hospitals, offices etc.). It can include lifting boxes at a packaging line, handling construction materials, pushing carts, handling patients in hospitals, and cleaning.

II.    Concept

In this, following objectives are to be carried out –

  • To minimize worker for Drum transporting, loading, unloading, lifting and tilting process.
  • To study material handling equipment for Drum handling.
  • To study the lifting and loading effect on human.
  • To study the ergonomic of material handling.
  • To Design modified drum tilting mechanism.
  • To fabricate prototype model.
  • Testing and conclusion.

    III. Literature review

    Literature review areas of research considered in the past, to be explained the approaches used & the new ideas. It is an assignment of previous task done by some authors and collection of information or data from research papers published in journals to progress our task. It is a way through which we can find new ideas, concept. There is lot of literatures published before on the same task; some reference papers are taken into consideration from which idea of the project is taken, the other reference will we discussed later.

For more information Click here

Impact of Boiler Water Chemistry on Waterside Tube Failures

Tags

, ,

IJIRST journal Published some good research work.

Paper Title:- Impact of Boiler Water Chemistry on Waterside Tube Failures

Abstract: This paper emphasis on the study of typical premature failure of water wall tubes of two thermal power plant boiler of same capacity (250 MW) and same operational parameter but with different boiler water chemistry.  The investigation concludes on the waterside corrosion in both of the case.  One boiler is running with coordinated phosphate treatment (CPT) and another with all volatile treatment (AVT).  The causes of corrosion were discovered and proposed measures for their elimination were given. Visual examination, chemical analysis of deposits, oxide scale thickness measurement and micro structural examination were carried to ascertain the probable cause/causes of failure. From the investigation, it was finally concluded that the combination of localized high tube metal temperature and wall thinning due to under deposit corrosion led to the premature tube failure in boiler running with coordinated phosphate treatment and localized pitting corrosion in boiler running with AVT. Based on the results and discussions, a possible way to combat the corrosion was proposed.

Keywords: Boiler Water Chemistry, Boiler Tube Failure, Caustic Gauging Corrosion, Pitting Corrosion, Boiler Deposits

I.       Introduction

Thermal power plants contribute about 75% to all India installed capacity of electric power generating stations. In worldwide energy sector, about 37% of electricity is produced by combusting coal [1-2]. Most of the Indian industrial boilers has been a prominent problem of boiler tube failure (BTF).  The tube failure causes loss in generation and which in turn responsible for massive economic loss. All type of boiler tubes have their defined life period and can fail due to various failure mechanisms. So, Successful and reliable operation of steam generating equipment needs the use of the best available methods to prevent scale and corrosion. In the boiler feed water cycle the ingress of contaminants, deposition of contaminants, and corrosion were found as the major carriers of potential problems who may have major role for the analysis of boiler tube failures. Failure can occur in all boiler areas: economizers, waterwalls, super-heaters (SH) and re-heaters (RH). Figure 1 shows simplified schematic of a coal fired sub critical boiler. The boiler tubes are of various sizes and thickness depending upon the pressure and mid wall metal temperature. According to the failures by location, water wall tubes are the second highest failure location after superheater tubes. However, according to the failures by material, carbon steel tubes statistically lead as the most frequent material causing failures. Correct tube material selection to resist the surrounding temperature is also one other decisive factor to stop the chances of BTF. Normally the water touched areas like economizer and waterwalls are made of boiler grade carbon steel. Superheater and reheater will have combination of low alloy tubes of stainless steels tubes. Figure 2[a] and [b] show the schematics of   heat transfer modes in the radiant and convective section of coal fired boiler. When the tube metal is in contact with the steam over period of time, the oxidation process may begin to form a layer of protective magnetite (Fe3O4) scale. Ferrous hydroxide [Fe (OH) 2] is believed to be an intermediate in this process, converting to magnetite above 100°C according to the Schikorr reaction:

Fe + 2 H2O → Fe (OH) 2 + H2

Followed by reaction:

3Fe (OH) 2 → Fe3O4 + 2 H2O + H2

The resulting protective metal oxide acts as a barrier against further corrosion, which passivates the metal and inhibits further oxidation.  Corrosion in the boiler is prevented by maintaining a boiler water condition in such a way that the magnetite layer is retained. Boiler water has to be at a pH of 9 to 10.2 in order to preserve the magnetite layer of steel. Iron oxidation in boilers results in the formation of two magnetite layers. The outer layer is porous, is easily penetrated by water and aggressive ions, and is the site of surface reactions. The inner layer is relatively less porous, and its growth is determined by diffusion of chemical species through the layer. Numerous laboratory and field test results have shown that protective oxide layer adhere uniformly to the surface along the height of boiler waterwalls and its associated components [1, 2]. It is marked from the work of many researchers that the initiation of any of the corrosion mechanisms requires interruption of the protective oxide film formed on the boiler interior surface and that often such disruption is the result of water treatment irregularities. In the extended contact this phenomenon will worsen situation that leads to potential creep rupture problems. As corrosion and scale deposition are time-dependent phenomenon, optimization of water chemistry is an important operational issue. In coordinated phosphate treatment, boiler water conditioning is done by dosing tri sodium phosphate (TSP) in boiler drum through high pressure (HP) dosing system, ammonia at condenser extraction pump (CEP) discharge and hydrazine at deaerator outlet. In all volatile treatment, this is done by dosing only ammonia or various polyamines at condenser extraction pump (CEP) discharge and hydrazine at deaerator outlet. The most popular water treatment scheme for sub-critical boilers is ammonia/hydrazine (AVT) feed water treatment. Hence, the safe and corrosion-free operation of a boiler requires proper water monitoring and treatment, with emphasis on the removal of possible corroding species [3, 4].

For more information on our website or Click here

Impact of Boiler Water Chemistry on Waterside Tube Failures

IJIRST journal Published some good research work.

Paper Title:- Impact of Boiler Water Chemistry on Waterside Tube Failures

Abstract: This paper emphasis on the study of typical premature failure of water wall tubes of two thermal power plant boiler of same capacity (250 MW) and same operational parameter but with different boiler water chemistry.  The investigation concludes on the waterside corrosion in both of the case.  One boiler is running with coordinated phosphate treatment (CPT) and another with all volatile treatment (AVT).  The causes of corrosion were discovered and proposed measures for their elimination were given. Visual examination, chemical analysis of deposits, oxide scale thickness measurement and micro structural examination were carried to ascertain the probable cause/causes of failure. From the investigation, it was finally concluded that the combination of localized high tube metal temperature and wall thinning due to under deposit corrosion led to the premature tube failure in boiler running with coordinated phosphate treatment and localized pitting corrosion in boiler running with AVT. Based on the results and discussions, a possible way to combat the corrosion was proposed.

Keywords: Boiler Water Chemistry, Boiler Tube Failure, Caustic Gauging Corrosion, Pitting Corrosion, Boiler Deposits

I.       Introduction

Thermal power plants contribute about 75% to all India installed capacity of electric power generating stations. In worldwide energy sector, about 37% of electricity is produced by combusting coal [1-2]. Most of the Indian industrial boilers has been a prominent problem of boiler tube failure (BTF).  The tube failure causes loss in generation and which in turn responsible for massive economic loss. All type of boiler tubes have their defined life period and can fail due to various failure mechanisms. So, Successful and reliable operation of steam generating equipment needs the use of the best available methods to prevent scale and corrosion. In the boiler feed water cycle the ingress of contaminants, deposition of contaminants, and corrosion were found as the major carriers of potential problems who may have major role for the analysis of boiler tube failures. Failure can occur in all boiler areas: economizers, waterwalls, super-heaters (SH) and re-heaters (RH). Figure 1 shows simplified schematic of a coal fired sub critical boiler. The boiler tubes are of various sizes and thickness depending upon the pressure and mid wall metal temperature. According to the failures by location, water wall tubes are the second highest failure location after superheater tubes. However, according to the failures by material, carbon steel tubes statistically lead as the most frequent material causing failures. Correct tube material selection to resist the surrounding temperature is also one other decisive factor to stop the chances of BTF. Normally the water touched areas like economizer and waterwalls are made of boiler grade carbon steel. Superheater and reheater will have combination of low alloy tubes of stainless steels tubes. Figure 2[a] and [b] show the schematics of   heat transfer modes in the radiant and convective section of coal fired boiler. When the tube metal is in contact with the steam over period of time, the oxidation process may begin to form a layer of protective magnetite (Fe3O4) scale. Ferrous hydroxide [Fe (OH) 2] is believed to be an intermediate in this process, converting to magnetite above 100°C according to the Schikorr reaction:

Fe + 2 H2O → Fe (OH) 2 + H2

Followed by reaction:

3Fe (OH) 2 → Fe3O4 + 2 H2O + H2

The resulting protective metal oxide acts as a barrier against further corrosion, which passivates the metal and inhibits further oxidation.  Corrosion in the boiler is prevented by maintaining a boiler water condition in such a way that the magnetite layer is retained. Boiler water has to be at a pH of 9 to 10.2 in order to preserve the magnetite layer of steel. Iron oxidation in boilers results in the formation of two magnetite layers. The outer layer is porous, is easily penetrated by water and aggressive ions, and is the site of surface reactions. The inner layer is relatively less porous, and its growth is determined by diffusion of chemical species through the layer. Numerous laboratory and field test results have shown that protective oxide layer adhere uniformly to the surface along the height of boiler waterwalls and its associated components [1, 2]. It is marked from the work of many researchers that the initiation of any of the corrosion mechanisms requires interruption of the protective oxide film formed on the boiler interior surface and that often such disruption is the result of water treatment irregularities. In the extended contact this phenomenon will worsen situation that leads to potential creep rupture problems. As corrosion and scale deposition are time-dependent phenomenon, optimization of water chemistry is an important operational issue. In coordinated phosphate treatment, boiler water conditioning is done by dosing tri sodium phosphate (TSP) in boiler drum through high pressure (HP) dosing system, ammonia at condenser extraction pump (CEP) discharge and hydrazine at deaerator outlet. In all volatile treatment, this is done by dosing only ammonia or various polyamines at condenser extraction pump (CEP) discharge and hydrazine at deaerator outlet. The most popular water treatment scheme for sub-critical boilers is ammonia/hydrazine (AVT) feed water treatment. Hence, the safe and corrosion-free operation of a boiler requires proper water monitoring and treatment, with emphasis on the removal of possible corroding species [3, 4].

For more information on our website or Click here

A Study on Strength and Durability Characteristics of Concrete with Partial Replacement of Fine Aggregate by Laterite Sand

IJIRST journal published this paper in our journal. This paper is for civil engineering student.

Title: A Study on Strength and Durability Characteristics of Concrete with Partial Replacement of Fine Aggregate by Laterite Sand

Abstract: The upturn in prices of materials for building construction is causing a lot of concern due to more utilization of building materials such as fine aggregate, coarse aggregate for the construction of structures, creating need for research into original materials as alternatives in building and rural infrastructures. Research efforts are directed towards enhancing the use of locally and readily available material such as lateritic soils for the construction. This study presents, the results of an experimental program to study the strength and durability performance of laterized concrete. A total of 108 cubes of 150mm, 108 cylinders 150mm dia X 300mm height and 81 prisms of 100 X100 X 500 mm dimensions were casted and cured in water as well as chemical solution for 7, 28, 60, and 90 days. Laterized concrete is concrete in which some or all of the fine aggregate is from laterite. To perform this investigation, M30 grade concrete is used, mix proportions 1: 1.274: 3.126 (Cement: sand/laterite: granite) with water/cement ratio of 0.45 was used. In this investigation, percentage laterite content (0%, 10%, 20%, 30%, 40% and 50%) exposure periods of 7, 28, 60, and 90 days on the compressive, flexure and splitting tensile strength tests of laterized concrete were investigated and also the effect of varying percentages of sulphuric acid (H2SO4) concentrations 1%, 3% and 5%, exposure periods of 7, 28, 60, and 90 days on the compressive, flexure and splitting tensile strength tests of laterized concrete were investigated. Data results revealed that the laterite fines used could satisfactorily replace the sand up to 30%. By fixing the laterite content as 30% of fine aggregate, the specimens are tested for durability studies under chemical attack. The specimens are immersed in H2SO4 solution for concentrations of 1%, 3%, 5% for an exposure period of 7, 28, 60 & 90 days, and the strengths of concrete at these ages were investigated.

Keywords: Concrete, Laterite Sand, Laterized Concrete, Sulphuric Acid, Tests

I.       Introduction

Concrete is the most commonly used construction factual in India and other countries also. It is tough to point out another material of construction which is as adaptable as concrete. It is the material of choice where strength, flexural structure, better workability, performance, durability, impermeability, fire resistance and abrasion resistance are required. Cement concrete is one of the outwardly simple but actually complex materials. Many of its compound behaviors are yet to be identified to employ this material advantageously and frugally.

Concrete is so closely related with every construction activity that it touches every human being in his day to day living. It is an artificial compound generally made by mixing of binding material(Cement), fine aggregates, coarse aggregates, water and admixtures in suitable proportions. Concrete does not solidify from drying after mixing and placement; the water  reacts with the cement in a chemical process known as hydration. In India the annual consumption of cement is in the order of approximately 22 million tons. Concrete is a site-made material unlike other materials of construction and as such can vary to a very great extent in its quality, properties and performance due to the use of natural materials except cement. From materials of varying properties, to make concrete of stipulated qualities, an intimate knowledge of the interaction of various ingredients that go into the making of concrete is required to be known, both in the fresh and hardened conditions. This knowledge is necessary for concrete technologists as well as for site engineers. The increased demand for the usage of the huge quantity of concrete leads to increase in cost of binding material (cement) and depletion of natural sources of fine aggregate which in turn increases cost of concrete. Due to above cause alternative materials are required to partially or fully replacement for portland cement or fine aggregate or coarse aggregate in the concrete mixture to continue the construction work, without changing the previous properties of the concrete like strength, workability and durability. Laterite is a product of intense sub aerial weathering. Laterisation process involves leaching of alkalis, basis and silica with complimentary enrichment of alumina, iron and some trace elements.

II.    Review of literature

Felix F. Udoeyo, Udeme H. Iron, Obasi O. Odim et all are conducted an experimental program to investigate some characteristics of concrete containing laterite as a partial or fullreplacement of sand is presented in this paper. Sand in a concrete of mix ratio 1:2:4:0.56 (cement:sand:coarse aggregate:water-cementratio) was replaced with 0%, 20%, 40%, 60%, 80%, and 100% laterite. The results show that concrete with up to 40% replacementlevel of sand by laterite attained the designed strength of 20 N/mm2, thus indicating the possibility of using laterite as a partial replacement for sand up to this level. It was also observed from the results that the workability of laterite concrete (LATCON) increases with increase in the replacement level of sand by laterite, while the compressive, split tensile, and flexural strengths and the percentage water absorption of the concrete decrease with increase in the replacement level of sand.

For more information about that Click here

A Study on Strength and Durability Characteristics of Concrete with Partial Replacement of Fine Aggregate by Laterite Sand

IJIRST journal published this paper in our journal. This paper is for civil engineering student.

Title: A Study on Strength and Durability Characteristics of Concrete with Partial Replacement of Fine Aggregate by Laterite Sand

Abstract: The upturn in prices of materials for building construction is causing a lot of concern due to more utilization of building materials such as fine aggregate, coarse aggregate for the construction of structures, creating need for research into original materials as alternatives in building and rural infrastructures. Research efforts are directed towards enhancing the use of locally and readily available material such as lateritic soils for the construction. This study presents, the results of an experimental program to study the strength and durability performance of laterized concrete. A total of 108 cubes of 150mm, 108 cylinders 150mm dia X 300mm height and 81 prisms of 100 X100 X 500 mm dimensions were casted and cured in water as well as chemical solution for 7, 28, 60, and 90 days. Laterized concrete is concrete in which some or all of the fine aggregate is from laterite. To perform this investigation, M30 grade concrete is used, mix proportions 1: 1.274: 3.126 (Cement: sand/laterite: granite) with water/cement ratio of 0.45 was used. In this investigation, percentage laterite content (0%, 10%, 20%, 30%, 40% and 50%) exposure periods of 7, 28, 60, and 90 days on the compressive, flexure and splitting tensile strength tests of laterized concrete were investigated and also the effect of varying percentages of sulphuric acid (H2SO4) concentrations 1%, 3% and 5%, exposure periods of 7, 28, 60, and 90 days on the compressive, flexure and splitting tensile strength tests of laterized concrete were investigated. Data results revealed that the laterite fines used could satisfactorily replace the sand up to 30%. By fixing the laterite content as 30% of fine aggregate, the specimens are tested for durability studies under chemical attack. The specimens are immersed in H2SO4 solution for concentrations of 1%, 3%, 5% for an exposure period of 7, 28, 60 & 90 days, and the strengths of concrete at these ages were investigated.

Keywords: Concrete, Laterite Sand, Laterized Concrete, Sulphuric Acid, Tests

I.       Introduction

Concrete is the most commonly used construction factual in India and other countries also. It is tough to point out another material of construction which is as adaptable as concrete. It is the material of choice where strength, flexural structure, better workability, performance, durability, impermeability, fire resistance and abrasion resistance are required. Cement concrete is one of the outwardly simple but actually complex materials. Many of its compound behaviors are yet to be identified to employ this material advantageously and frugally.

Concrete is so closely related with every construction activity that it touches every human being in his day to day living. It is an artificial compound generally made by mixing of binding material(Cement), fine aggregates, coarse aggregates, water and admixtures in suitable proportions. Concrete does not solidify from drying after mixing and placement; the water  reacts with the cement in a chemical process known as hydration. In India the annual consumption of cement is in the order of approximately 22 million tons. Concrete is a site-made material unlike other materials of construction and as such can vary to a very great extent in its quality, properties and performance due to the use of natural materials except cement. From materials of varying properties, to make concrete of stipulated qualities, an intimate knowledge of the interaction of various ingredients that go into the making of concrete is required to be known, both in the fresh and hardened conditions. This knowledge is necessary for concrete technologists as well as for site engineers. The increased demand for the usage of the huge quantity of concrete leads to increase in cost of binding material (cement) and depletion of natural sources of fine aggregate which in turn increases cost of concrete. Due to above cause alternative materials are required to partially or fully replacement for portland cement or fine aggregate or coarse aggregate in the concrete mixture to continue the construction work, without changing the previous properties of the concrete like strength, workability and durability. Laterite is a product of intense sub aerial weathering. Laterisation process involves leaching of alkalis, basis and silica with complimentary enrichment of alumina, iron and some trace elements.

II.    Review of literature

Felix F. Udoeyo, Udeme H. Iron, Obasi O. Odim et all are conducted an experimental program to investigate some characteristics of concrete containing laterite as a partial or fullreplacement of sand is presented in this paper. Sand in a concrete of mix ratio 1:2:4:0.56 (cement:sand:coarse aggregate:water-cementratio) was replaced with 0%, 20%, 40%, 60%, 80%, and 100% laterite. The results show that concrete with up to 40% replacementlevel of sand by laterite attained the designed strength of 20 N/mm2, thus indicating the possibility of using laterite as a partial replacement for sand up to this level. It was also observed from the results that the workability of laterite concrete (LATCON) increases with increase in the replacement level of sand by laterite, while the compressive, split tensile, and flexural strengths and the percentage water absorption of the concrete decrease with increase in the replacement level of sand.

For more information about that Click here

A Novel High Resolution Adaptive Beam Forming Algorithm for High Convergence

Tags

, ,

Abstract: This paper introduces a new robust four way LMS and variable step size NLMS beam forming algorithm to reduce interference in a smart antenna system. This algorithm is able to resolve signals arriving from narrowband sources propagating plane waves close to the array end fire. The results of previously used adaptive algorithm have the fixed step size NLMS will result in a trade-off issue between convergence rate and steady-state MSE of NLMS algorithm. This issue is solved by using four way LMS and VSSNLMS which will improve the efficiency of the convergence point. The proposed algorithm implemented reduces the mean square error (MSE) and shows faster convergence rate when compared to the conventional NLMS.

Keywords: Adaptive Antenna, Beamforming, Means Square Error (MSE), Convergence

I.   Introduction

A.      Introduction

In today’s world numbers of mobile users are increasing day by day, hence it is necessary to serve such a huge market of mobile users with high QOS even though the spectrum is limited. This becomes a major challenging problem for the service providers to solve. A major limitation in capacity and performance is co-channel interference caused by the increasing number of users and the multipath fading and delay spread. Research efforts investigating effective technologies to mitigate such effects have been going on and among these methods Adaptive antenna employment is the most promising technology. This project works on Adaptive Antenna which ensures high capacity providing with the same Quality of Service(QOS).In a normal scenario currently the mobile towers employ parabolic dish or a horn antenna but this suffers if the SNR is low the signals have to be repeatedly retransmitted from mobile station to base station. The use of Adaptive Antenna considers an array of antennas in which the antenna will receive the delayed versions of the electromagnetic wave and adds them to achieve high SNR.

B.      Problem Statement

In the earlier antenna radiation was directed based on frequency or time, Therefore spectrum was not utilized efficiently because as the number of users increases the quality of service decreases. Hence, in this work a solution to use the Adaptive antenna frameworks have been proposed and used as an efficient means to meet the quickly expanding the  traffic volume. This issue of Technology has discusses the importance of various advanced antenna schemes for improving the same amount of spectrum and provides service to the large amount of mobile users is deduced. This is done by separating the users with respect to direction.

II.                Adaptive antenna

Adaptive antenna is the one which adapts itself to pick the user signal in any direction without user intervention , basically it undergoes through a two phase process:

  • Direction detection Estimation (DDE) using a suitable algorithm and sensor data.
  • Beam forming which forms a beam in the desired direction and nulls in the interference direction.

Direction Detection Estimation (DDE) methods are used to detect the incoming wave and the other signals which arrive from different parts of the space can be processed to extract different type of data including direction desired incoming signal falling on the antenna array.

Beam forming is a process of forming the Main beam in the desired direction and nulls in the direction of jammers direction. The block diagram is shown in  Figure1 shows an adaptive antenna structure with N antenna elements, DDE blocks, Adaptive signal processor algorithms to make adaptive antenna system smart, where incoming signal is processed by beam forming algorithms the figure also shows main beam formed in the direction of desired signal and nulls in the jammers direction.

fg

Fig. 1: Adaptive Antenna

http://ijirst.org/Article.php?manuscript=IJIRSTV2I3036

http://www.ijirst.org